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Three-dimensional Rayleigh-Taylor instability, induced by accelerating a small 
volume of water down a vertical tube using air pressure, is investigated. Two 
geometries are studied: a 15.875 em circular tube and a 12.7 em square tube. Runs 
were made with initial disturbances in the form of standing waves forced by shaking 
the test section in a lateral direction. Accelerations ranging from 5 to 10 times 
gravitational acceleration and wavenumbers from 1 cm-l to 8 cm-l are studied. The 
resulting instability was recorded and later analysed using high-speed motion picture 
photography. Measurements of the growth rate are found to agree well with linear 
theory. In addition, good qualitative agreement between photographs and three- 
dimensional surface plots of the weakly nonlinear solution of Part 1 of this series 
(Jacobs & Catton 1988) is obtained. 

1. Introduction 
There has been a considerable amount of work devoted to the experimental 

verification of the theory of Rayleigh-Taylor instability. Attempting to verify 
Taylor’s (1950) linear theory, Lewis (1950) was first to experimentally investigate the 
instability. In his experiments, liquids were accelerated down a vertical channel, 
producing an unstable stratified configuration. Using high-speed photography to 
view the instability, Lewis described three stages of interfacial development. The 
first stage, which he considered to be valid up until the wave amplitude was 
approximately $ the wavelength, was characterized by the growth of the instability 
being adequately described by linear theory. Lewis described the next stage as a 
transition region in which the amplitude grew to t the wavelength. In the final stage, 
the instability consisted of round-ended bubbles rising at  a constant velocity 
separated by narrow spikes in approximate free fall. 

Allred & Blount (1954) continued the experimental effort begun by Lewis. Using 
a similar apparatus, they obtained results for situations where the densities of both 
fluids are approximately equal. For these density ratios, they saw round-ended 
columns of the heavier fluid penetrating the lighter fluid instead of the sharp spikes 
usually observed with large density differences. In the later stages of development, 
they observed a Kelvin-Helmholtz instability in which the vertical sides of the 
troughs rolled into vortex-like structures. The results of Allred & Blount did not agree 
well with the theory of Taylor and they attributed this disagreement to the fact that 
they had to use two liquids for their fluids (instead of a gas and a liquid). In doing 
so. the diffusion of one medium into the other tended to ‘smear ’ the interface, thus 
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reducing the growth rate. Duff, Harlow & Hirt (1962) had a similar problem with 
their experiments using two gases. Emmons, Chang & Watson (1960) performed 
experiments in which they were able to include the effects of surface tension. Their 
results agreed well with the theory of Bellman & Pennington (1954), except in the 
vicinity of the cutoff wavenumber. This disagreement was later explained by the 
nonlinear theory of Nayfeh (1969). More recent experimental work has been reported 
by Cole & Tankin (1973), Ratafia (1973) and Popil & Curzon (1980) 

All the experiments mentioned above have one thing in common: they were all 
done in cavities with long narrow geometry, intending to isolate the two-dimensional 
instability. The work we present here differs from those investigations in that the 
instability in a fully three-dimensional environment is studied. The experimental 
apparatus we use is similar in principle to the ones used by Lewis (1950) and Allred 
& Blount (1954), differing only in that we use tubes of circular and square cross- 
section. Jacobs et al. (1985) looked a t  Rayleigh-Taylor instability produced in a 
circular enclosure without forced initial conditions. This work may be considered a 
continuation of that investigation. Here we shall look a t  two geometries (square and 
circular) and, in order to  obtain better controlled experiments, initial conditions are 
forced by gently shaking the test section in a lateral direction. 

2. Experimental apparatus and procedure 
Rayleigh-Taylor instability was produced in these experiments by accelerating a 

small volume of water down a vertical tube using air pressure. Figure 1 is a schematic 
of the experimental apparatus as it appears just prior to the start of a run. It consists 
of a cylindrical air tank, approximately 90cm in diameter and 280 cm long, 
connected to a vertical tube. The connection from the tank to the vertical tube is 
made through an elbow and bellows expansion joint, shown in the drawing. The 
upper section of the tube is standard 6 in. schedule 40 aluminium, while the lower 
half (the test section) is Plexiglas. The tjest section is divided in tJwo parts with a piece 
of very thin (0.008 mm) aluminium foil clamped in the joint to isolate the two 
sections. A Teflon disk and an overlying layer of water rest on top of the foil. The 
upper surface of the water provides the interface where the instability is produced, 
while the disk, sized so that it slides freely in the test section, is used to ensure that 
the bottom surface of the water remains flat as it is accelerated down the tube. 
Suspended immediately below the upper diaphragm is a cutter made of a smaller 
steel tube, its bottom edge lined with razor blades. The cutter is temporarily held in 
place with an electromagnet. The bottom end of the test section is sealed with 
another heavier piece of aluminium foil. Initially, the sections of tube above and 
below the liquid layer are pressurized equally; the bottom section is then isolated 
from the rest of the system by the activation of a solenoid valve. To initiate a run, 
the current to the electromagnet is disconnected, releasing the cutter which falls 
under its own weight and breaks the bottom diaphragm. This depressurizes the 
bottom chamber. The added force caused by the pressure difference is enough to 
break the thinner diaphragm, forcing the water and disk to accelerate down the 
tube. 

Neglecting friction forces acting between the water and disk against the tube wall, 
and assuming that the pressure above and below the assembly remains constant, the 
water will experience a net downward acceleration of magnitude. 

FA 
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FIGURE 1.  Schematic of the experimental apparatus. 

where M is the mass of the water and disk, P is the initial tank pressure, A is the 
cross-sectional area of the tube and go is gravitational acceleration. 

Two test sections were used in this study. Shown in figure 1 is the circular test 
section, made from two pieces of cast acrylic tube with an 15.875 cm inside diameter. 
A square test section, constructed from four pieces of 1.27 cm thick acrylic sheet, 
glued to form a tube with a 12.7 cm square cross-section, was also used. 

Initial conditions were generated by gently shaking the test section in a lateral 
direction. An MB Electronics model EA1250 vibration exciter (shown in figure 1 
bolted to  a stand) was used to  shake the test section. The shaker is coupled to the test 
section with a rod and a ball joint. The driving signal for the exciter was provided by 
a, Hewlett-Packard model 202c low-frequency oscillator. The signal was fed through 
a MB Electronics 2120MB power amplifier which boosted it enough to  drive the 
exciter. 

The instability was visualized using high-speed motion-picture photography, 
taken from two vantage points. One camera was positioned in front of the apparatus 
to record the instability from the side, while the other was placed at  the top of the 
vertical pipe looking down through a port in the elbow to  provide a top view of the 
instability. Both were Hycam 16 mm rotating-prism-type cameras. operated a t  1000 
frames per s. A 50 mm focal-length lens was used with the top camera to provide a 
close view of the interface. Use was made of a longer 75 mm focal-length lens with 
the front camera to reduce parallax errors. Lighting was provided by three 650 W 
quartz floodlights, placed behind a translucent acrylic sheet and positioned to 
provide an illuminated background for the side camera. Two additional 1OOOW 
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floodlights were positioned in front of the apparatus to provide fill lighting for the 
side camera. These also served to provide light for the upper camera by illuminating 
the upper side of the Teflon disk. Black-and-white Kodak 4-X 7277 reversal film was 
used. 

The experimental procedure required a series of events to be triggered in rapid 
succession during a run. This was accomplished using a cascade of time-delay circuits 
which, when activated, (1) start the cameras, (2) close the solenoid valve isolating the 
bottom part of the test section from the tank, (3) cut off the shaker signal, and (4) 
release the electromagnet, all a t  the proper time. A more detailed description of the 
experimental apparatus and procedure can be found in Jacobs (1986). 

3. Results and discussion 
3.1. Runs in the circular test section 

A series of runs were made in the circular test section with initial conditions 
consisting of sloshing-type standing waves (i.e. modes, antisymmetric about a plane 
passing through the axis of the tube). This motion produced initial free-surface 
deflections of the form 

Wavenumbers 12’ varying from 1.08 cm-l to 7.81 em-’ were forced. In all of these 
runs, 3 1 of water ( d  = 15 cm) was accelerated a t  either 59 or log. 

In an earlier investigation using this apparatus (Jacobs et al. 1985)’ the acceleration 
of the slug of water was measured by recording the location of the disk as a function 
of time off of the film. Linear regression was then used to fit this data to a second- 
order polynomial; and from this the acceleration was determined. In  the runs 
described here, the side-view camera was moved closer to the test section to provide 
pictures with greater resolution. In this new position, the disk was no longer within 
the camera’s view. Thus, there was no good reference point with which to track the 
motion of the liquid slug, making the measurement of acceleration difficult. 
Measurements were initially made using the interfacial contact line as a reference 
point; however, they did not provide sufficiently consistent results. I n  the runs 
described here, the water was carefully measured, the disk was accurately weighed 
and the system pressure was accurately monitored prior to a run. The errors made 
in measuring the mass of the liquid and disk and in the measurement of pressure were 
less than 1 %. Estimates of the drag of the water and disk against the tube wall were 
found to be less than 1 % of the pressure force which drives the system. Thus, it is 
felt that in these experiments, the acceleration is given to reasonable accuracy by 
(2.1) with the appropriate measurements. This was verified by the earlier set of runs 
described above, which revealed (2.1) to  be in error by no more than 0.2g. 

Table 1 contains data obtained from these runs. In all cases the acceleration was 
determined as described above. With knowledge of the mode being forced (easily 
predicted by the forcing frequency) and the tube diameter, the wavenumber can be 
calculated using 

= F(t )  cosBJ,(k’r’). (3.1) 

(3.2) 
k:, = j ;  -p, n 

where ji, :, is the nth zero of the Bessel function J,, and R’ is the tube radius. Also 
given in table 1 are the cutoff parameter K E k’/kk and the dimensionless linear 
growth rate u1 = o ; / ( g k ’ ) f  = (1  - K2$. 

Figure 2 gives a sequence of views of the instability in run C3. The photographs 
show that, initially, the shape of the interface is predominantly that of a single 
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pun s l g o  
c1 10.0 
c2  10.0 
c3  10.0 
c 4  10.0 
C6 10.0 
G1 5.0 
G2 5.0 
G3 5.0 
G4 5.0 
G5 5.0 

n 

10 
6 
3 

20 
10 
3 
6 

10 
15 
20 

k' 
(cm-') 

3.87 
2.28 
1.08 
7.81 
3.87 
1.08 
2.28 
3.87 
5.86 
7.81 

K 

0.333 
0.196 
0.093 
0.672 
0.333 
0.131 
0.277 
0.47 1 
0.713 
0.950 

0 1  

0.943 
0.981 
0.996 
0.741 
0.943 
0.991 
0.961 
0.882 
0.701 
0.312 

U 

0.75 
1.13 
0.99 
0.87 
0.92 
1.04 
0.99 
0.89 
0.78 
0.37 

TABLE 1. Runs in the circular test section 

E 

0.107 
0.051 
0.119 
0.019 
0.050 
0.100 
0.044 
0.041 
0.021 
0.032 

Fourier mode. As time progresses, the crests become sharper and more narrow while 
the troughs become broader and more rounded. Later on, the centre crest takes on 
a spike-like appearance while the centremost trough forms an almost spherical 
bubble. Similarly, the outer crest forms a sharp ridge. Figure 3 provides views of 
another run with a higher wavenumber. Again the shape of the interface initially 
resembles that of a single Fourier mode with the crests becoming narrower, and the 
troughs broader as time progresses. In the later stages of development, the 
centremost crest forms a droplet appearing as though it will eventually separate from 
the surface. The other crests form a series of thin sheets, reminiscent of the petals of 
a flower ; while the corresponding troughs form annular bubbles which eventually 
breakup into smaller more spherical bubbles. Similarly, the centremost trough forms 
a spherical bubble, growing a t  a greater rate than the others. 

Owing to the close proximity of the side camera in these runs, the side view of the 
instability could be recorded only for as long as shown in figures 2 and 3. The top 
camera provided views much later in time. These films showed gradual destruction 
of the spatially periodic structure of the initial disturbance into what appeared to be 
turbulence. This process is discussed in greater detail in Jacobs et al. (1985). 

Crest heights were measured in these runs with the aid of a graphics tablet. This 
tablet is able to determine the location of a stylus when positioned on its surface, and 
then send these coordinates to a dedicated microcomputer which records them on 
magnetic tape. The side-view films were projected onto the tablet and the film plane 
x- and y-coordinates of the wave crests were recorded. To obtain an estimate of the 
mean surface elevation, the position of the portion of the contact line closest to the 
camera as well as the portion that was furthest were recorded. The y-coordinates of 
these points were then averaged to obtain the y-coordinate of the centrepoint of the 
meniscus plane. The crest amplitude was then determined by subtracting the crest 
y-coordinate- from this centrepoint. The side-view films for these runs were taken a t  
a slight angle of elevation (approximately 10'); so the measurements had to be 
corrected for this viewing angle. The digitized data was converted into physical units 
using the tube diameter (digitized a t  the beginning of each session) as a reference 
length. 

A time sequence of crest heights were obtained for each run. These included the 
centremost crest and then as many others as were clearly visible. The centremost 
crest, being the largest and most clearly visible, always provided the best data (even 
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FIGURE 2 .  A sequence of photographs taken from the film of run C3. (a )  t = 5 ms, with measured 
centre-crest height f k '  = 0.37; (b) t = 15 ms, q ' k  = 0.68; (c) t = 25 ms, f k '  = 1.77; (d )  t = 35 ms, 
7 j k f  = 3.79. 
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FIGURE 3. A sequence of photographs taken from the film of run C6. (a )  t = 5 ms, with measured 
centre-crest height ~ ' k '  = 0.66; ( b )  t = 15 ma, r'k' = 3.09; (c) t = 25 ms, q'k' = 8.41 ; (d )  t = 35 ms, 
f k '  = 18.6. 
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better than a weighted average of all the crests). As a result, only the centre-crest 
data were used. The initial amplitude qi was determined by averaging the measured 
amplitude over the first few frames a t  the beginning of each run; then the r.m.s. slope 
e was calculated using 

[l - (R’L’)-2]iJl(R’k’) 
€ =  76 k‘. 

d2 JAA,,) (3.3) 

The error induced in the crest height measurements as a result of the accuracy of the 
graphics tablet is less than 0.05 mm; however, there may be greater error in these 
measurements caused by the uncertainty of the exact location of a crest tip when 
viewed on the films. The measurement of elapsed time was accomplished using 
timing marks placed on the film by the high-speed cameras. The error in time 
measurements as a result of fluctuations in the film speed is estimated to be less than 
0.05 ms. Because of the uncertainty of the exact starting time, there may be an error 
in the location of the origin by as much as 2 ms. 

If the growth of the surface waves were purely exponential (i.e. 7 - ert), a plot of 
In (7) versus t would yield a straight line with slope equal to the growth rate u. In 
reality, the growth (even of the linear instability) is rarely purely exponential. Linear 
theory predicts the growth to be given by a linear combination of sinh(at) and 
cosh (at). The logarithms of these functions approach straight lines as t+ co ; 
however, they are not linear near t = 0. We know from the analysis of Part 1, (Jacobs 
& Catton 1988) that nonlinear saturation will cause the finite-amplitude instability 
to grow at a rate less than exponential, and that this effect increases with increasing 
amplitude. Thus, we expect a plot of ln(q) versus time to diverge from the straight 
line given by purely exponential growth both near t = 0 and as t + co. If the initial 
amplitude is small enough, there will be a section in the centre portion of the plot of 
In (7) that is very nearly linear and with slope nearly equalling the growth rate. 

Say that a run is initiated with conditions such that the linear growth is given by 
7 - cosh (at). The plot of In (7) versus time would look like the curve marked cosh (2) 
in figure 4. This curve starts a t  x = 0 with zero slope, then approaches a straight line 
with slope equal to a as t + 00. As the amplitude becomes large, nonlinear saturation 
becomes increasingly more important, causing the amplitude to fall below linear 
theory as shown in the figure (dashed line), and giving the plot of the nonlinear 
instability an S-shaped appearance. If the initial amplitude is small enough, the 
slope of the centre portion of the curve will be a good approximation to the linear 
growth rate, making the linear growth rate approximately equal to the maximum 
slope. Now suppose that the instability is started with initial conditions giving the 
linear growth of q - sinh (at). The plot of In (q) versus time would now look like the 
curve marked sinh(x) in figure 4. Just  as before, the linear growth rate of this 
instability is equal to the slope in the central portion of the curve ; however, this 
time the slope a t  the point of minimum second derivative will give an accurate 
measurement of linear growth rate. 

Table 1 contains the dimensionless measured growth rate a 5 measured growth 
rate/(gk‘)i for the runs in the circular test section, determined using the criteria 
described above. Linear regression was used to fit line segments to selected portions 
of data, allowing the slope of these curves to be determined. Only data falling inside 
a time window of length equal to one growth constant (l/ul) was used in the 
regression. The window was allowed to traverse the data giving a sequence of slopes. 
The largest slope in the sequence was taken as the growth rate. In  all cases the time 
window contained a t  least five points. Run G5 was unique in that the data for this 
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FIGURE 4. A plot of the logarithm of several exponential functions. 
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run passes through zero indicating that the solution had a hyperbolic sine component. 
For this run the slope at the point of minimum second derivative was used to obtain 
the growth rate. Figure 5 is a log-linear plot of the data of run C3 along with the line 
fit to the section providing the maximum slope. Figure 6 is a plot of the growth rates 
given in table 1 along with a line representing linear theory. Although there is a lot 
of scatter in the data, caused by the inaccuracy of the crest height measurements, the 
data are distributed evenly over the line, indicating good agreement with linear 
theory. 
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FIGURE 6. Measured growth rate versus K for the runs in the circular test section, along with a 
line giving the value predicted by linear theory. 

FIGURE 7 (a) .  For caption see facing page. 

In all cases the crest elevation in the intervals giving the measured growth rates 
of figure 6 were such that q’k’ M 1. Thus, growth rates within 10% of linear theory 
were obtained for amplitudes up to q’k’ z 1.  Lewis (1950) found his growth-rate 
measurements to drop below 50% of the linear theory value when the amplitude 
reached q’k‘ M 2.5 ; and considered the instability to be in good agreement with linear 
theory for amplitudes below this point. In  contrast, a similar analysis of the data 
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FIGURE 7 .  A comparison of photographs taken from the film of run C3 and three-dimensional plots 
of the asymptotic solution with E = 0.119, K = 0.0929 and ( a )  t = 1.545. ( b )  t = 2.06 and (c) 
t = 2.575. 
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Linear theory 

Nonlinear theory 

FIGURE 8. A comparison of solutions calculated using linear and weakly nonlinear theory with 
6 = 0.119, K = 0.0929 and t = 2.575. 

presented here shows the measured growth rate to drop below 50 YO of linear theory 
when f k '  x 5. It is interesting to note that the weakly nonlinear solution developed 
in Part  1 (Jacobs & Catton 1988) was found to break down a t  f k '  x 0.5. Thus, linear 
theory has proven itself to be valid for significantly larger amplitudes than the 
weakly nonlinear theory. 

Figure 7(a -c )  compares photographs taken from run C3 to surface plots of the 
asymptotic solution of Part 1 with parameter values chosen to  match the experiment 
(6 = 0.119, K = 0.0929 and t = 1.545, 2.06 and 2.575). The agreement between 
experiment and theory as observed in this figure is very good. Figure 8 is a 
comparison of the nonlinear solution of figure 7 ( c )  with linear theory. In  this 
comparison the effects of the nonlinear analysis can easily be seen. Although the 
amplitudes of the two solutions are very close, the differences in shape are 
considerable. The nonlinear solution is much better a t  capturing the actual shape of 
the instability shown in the photographs. In  particular, the nonlinear solution is 
necessary to reproduce the sharpness of the crest tips. 

3.2. Runs in the square test section 
Runs were made in the square test section with initial conditions forced by shaking 
the test section in the same way as for the circular geometry. Runs were first made 
forcing the test section in a direction perpendicular to a side of the square tube. 
This type of forcing produced standing waves which were predominantly two- 
dimensional ; however, when runs were made using these two-dimensional waves as 
initial conditions, the instability that resulted was not two-dimensional but was 
instead entirely three-dimensional. All of the runs made under these conditions 
developed instabilities having roughly square planform with wavenumbers equalling 
that of the forced two-dimensional initial disturbance. Thus, a two-dimensional 
instability could not be produced in these experiments. 

With this in mind, runs were then made with initial conditions forced by shaking 



Three-dimensional Rayleigh-Taylor instability. Part 2 365 

k‘ 
run y/g, n (ern-’) K u1 U 6 

D1 10.0 27 6.68 0.575 0.819 0.87 - 

D2 10.0 21 5.19 0.446 0.895 0.89 - 

D3 10.0 15 3.71 0.319 0.948 0.80 - 

D4 10.0 9 2.23 0.192 0.981 1.05 0.096 
D6 10.0 5 1.24 0.107 0.994 0.97 0.061 
D7 10.0 33 8.16 0.702 0.712 0.72 - 

E2 5.0 27 6.68 0.813 0.583 0.67 - 

E3 5.0 21 5.19 0.631 0.776 0.72 - 

E4 5.0 15 3.71 0.451 0.892 0.86 0.141 
E5 5.0 9 2.23 0.271 0.963 0.97 0.200 
E7 5.0 5 1.24 0.151 0.989 1.02 0.069 

TABLE 2. Runs in the square test section 

the test section in a direction running diagonally across the square tube. This 
excitation produced square-type standing waves with initial surface deflections of 

(3.4) 
the form 

Wavenumbers k’ ranging from 1.24 cm-l to 8.16 cm-l were forced. I n  each of these 
runs 2 1 of water (d’ = 12.4 cm) was accelerated a t  either 59 or log. Table 2 gives a 
list of these runs. The values given for acceleration and wavenumber in table were 
determined in the same manner as for the circular geometry except that in this case 

(3.5) 
I nlr the wavenumber is given by 

k =- 

7 = F(t)[eos (k’x’) + cos (lc’y’)]. 

X’ ’ 
where X‘ is the width of the square test section. 

Figure 9 is a sequence of views taken from the film of run E7 ; and figure 10 shows 
views taken from a run with higher wavenumber. In these photographs, the 
instability initially appears in the form of a single doubly periodic Fourier mode. As 
time increases the surface shape changes, with the crests becoming narrower and 
the troughs wider. Like pictures taken of the two-dimensional instability, the surface 
shape in these photographs takes on a cusped appearance. I n  the later stages of 
development the instability consists of an array of spikes interlaced by a grid of more 
or less spherical bubbles, arranged such that each bubble is surrounded by four 
spikes. The spikes are connected by a network of thin sheets of liquid which form 
boundaries around the bubbles. Very late in the run the spike tips form an array of 
pendant-like drops which appear as though they will eventually separate from the 
rest of the liquid. 

Wave amplitudes were measured in a slightly different way in these runs. I n  this 
geometry, minima as well as maxima in surface elevation along a line perpendicular 
to the line of sight (x’ = constant) could easily be observed in the films. Given that 
the surface shape is described by (3.4), the maxima correspond to crests and the 
minima correspond to points where 7 = 0 (nodes). The difference in elevation 
between the crests and nodes can then be measured to obtain the amplitude. Another 
important difference between the circular and square geometries is that in the square 
geometry the wave amplitude is more or less uniform throughout the tube. This 
means that elevations of several crests and nodes can be measured in each frame and 
then averaged to obtain a more reliable value. In the runs described here, several 
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FIGTJRE 9. A sequence of photographs taken from the film of run E7. (a )  t = 20 ms, with measured 
crest height f k '  = 0.30; ( b )  t = 30 ms, r'k' = 0.56; (c) t = 40 ms, ~ ' k '  = 1.06; (d) t = 50 ms, 
p'k' = 1.71. 
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FIGURE 10. A sequence of photographs taken from the film of run D4. (a)  t = 5 ms, with measured 
crest height f k '  = 0.28; ( b )  t = 15 ms, rjk' = 0.88; (c) t = 25 ms, q'k' = 2.77;  (d )  t = 35 ms, 
~ ' k  = 4.63. 
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FIGURE 11. along with a line 

waves (four to eight) were chosen to be measured. I n  each frame the elevations of the 
chosen crests along with an equal number of neighbouring nodes were determined. As 
before, measurements were obtained with the aid of a graphics tablet. The heights of 
the crests were then averaged, and the same was done for the nodes. The average 
node elevation was then subtracted from the average crest height to obtain the 
amplitude. The measurements were then corrected for the viewing angle and 
converted into physical units in the same way as was done for the circular geometry. 
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FIQURE 12. A comparison of photographs taken from the film of run E7 and three-dimensional plots 
of the asymptotic solution with E = 0.069, K = 0.1508 and (a )  t = 1.56, (b )  t = 2.34 and ( e )  t = 3.12. 
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Initial amplitude was determined in the same way in these runs as for the circular 
geometry, except in this geometry E is given by 

E = Bql, k’. (3.6) 

In  some cases the initial amplitude was too small to be measured ; thus e is missing 
for some of the runs in table 2. 

Growth rates were determined in the same manner as for the circular geometry. 
These values are listed in table 2 and are plotted in figure 11 along with a line 
representing linear theory. There is noticeably less scatter in figure 11 than the 
corresponding plot for the circular geometry (figure 6),  owing to the effect of 
averaging the measurements. As in the circular geometry, there is good agreement 
between the measured growth rates and linear theory. 

The average crest heights in the intervals giving the measured growth rates of 
figure 11 were also calculated in these runs. This data again revealed that measured 
growth rates within 10% of linear theory were obtained with amplitudes up to 
q‘k‘ x 1. Figure 12(a-c) is a comparison of photographs taken from the film of run 
E7 with surface plots of the asymptotic solution using E = 0.069, K = 0.1508 and 
t = 1.56, 2.34 and 3.12. Again the agreement between experiment and theory is quite 
good. 

4. Conclusions 
Three-dimensional Rayleigh-Taylor instability was produced in square and 

circular geometries with initial disturbances consisting of sloshing-type standing 
waves, forced by gently shaking the test section in a lateral direction. Photographs 
of the instability revealed networks of spikes and sheets of liquid separating nearly 
spherical bubbles or two-dimensional troughs. Crest heights were measured, and 
from these measurements growth rates were determined. This data revealed that 
good agreement with linear theory can be obtained for amplitudes up to q’k’ x 1.  This 
is rather surprising considering that the validity of linear theory is based on the 
assumption that q’k’ + 1.  I n  Part 1 (Jacobs & Catton 1988) we found that the weakly 
nonlinear solution breaks down a t  q’k’ x 0.5 ; thus, linear theory appears to be valid 
for amplitudes significantly greater than the weakly nonlinear theory. Good 
agreement was found between experiment and the nonlinear analysis when 
comparing photographs with three-dimensional surface plots of the asymptotic 
solution ; thus, nonlinear theory is much better a t  predicting the shape of the 
instability. 

Several conclusions can be made. Linear theory is effective in predicting the 
growth rate of the instability well into the nonlinear regime, and is valid much later 
in time than the weakly nonlinear analysis. Even though the weakly nonlinear 
analysis is valid only for a short time, i t  is necessary and effective in predicting 
certain surface shape characteristics of the nonlinear instability, such as the sharpen- 
ing of crests and the broadening of troughs. It may be noted that the weakly 
nonlinear analysis is able to show the effect of geometry on the growth of the 
instability ; however, this effect is too small to be verified by measurements in these 
experiments. 

This work was supported by the National Science Foundation under grant MEA 
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